SCHALLTECHNISCHER BERICHT NR. 11467-1.002

über die Straßenverkehrslärmsituation im Bebauungsplangebiet
"Die Weertze" in 26810 Westoverledingen

Auftraggeber:

Gemeinde Westoverledingen Postfach 120

26810 Westoverledingen

Bearbeiter:

Dipl.-Ing. Matthias Dähne

1.) Zusammenfassung

Die nachfolgende Untersuchung hat ergeben, daß durch Lärmschutz-maßnahmen die Orientierungswerte nach DIN 18005 im Bebauungsplangebiet "Die Weertze" in 26810 Westoverledingen bezüglich Straßenverkehrslärm weitestgehend eingehalten werden können.

Für den Schutz des Freiraumes wird ein Lärmschutzwall vorgesehen.

Ein ausreichender Schutz in den Aufenthaltsräumen der geplanten Bebauung wird mit den hier angegebenen Schallschutzfenstern gewährleistet.

Unter Berücksichtigung der Lärmschutzmaßnahmen bestehen aus schalltechnischer Sicht keine Bedenken gegen die Aufstellung des Bebauungsplanes.

Nachstehender Bericht wurde nach bestem Wissen und Gewissen mit größter Sorgfalt erstellt.

i. All Silver

Matthias Dähne

Rheine, den 29.04.94 Dh/ri

Beratence ingenieure
Bonifatiusstr. 400, 48432 Rheine

KÖTTER Beratende Ingenieure

Rheine GmbH

Vom Ministerium MURL benannte

MoCotolle nach (326 DimSchG

Bundesimmissionsschutzgesetz

Siegfried Zech

(Handlungsbevol) mächtigter)

INHALTSVERZEICHNIS

•		<u>Seite</u>
1.):	Zusammenfassung	2.
2.)	Situation und Aufgabenstellung	4
3.)	Beurteilungsgrundlagen und Orientierungswerte	5
4.)	Berechnung des Sträßenverkehrslärmes	7
5.)	Erforderliche Lärmschutzmaßnahmen	11
6.)	Beurteilung	14
7.)	Anlage	16

2.) Situation und Aufgabenstellung

Die Gemeinde Westoverledingen plant die Aufstellung des Bebauungsplanes "Die Weertze" zum Zwecke der Ausweisung als Allgemeines Wohngebiet (WA).

Das Gebiet wird von der Bundesstraße B 70 (Leerer Straße), der Kreisstraße K 24 (Ihrener Straße) und der Kreisstraße K 23 (Bahnhofstraße) umgrenzt.

Im Auftrag der Gemeinde Westoverledingen sollen im Plangebiet die Straßenverkehrslärmimmissionen durch die drei Straßen ermittelt und beurteilt werden.

Gegebenenfalls sind geeignete Schallschutzmaßnahmen auszuarbeiten.

Die Ergebnisse sind in Form eines gutachtlichen Berichtes vorzulegen.

3.) Beurteilungsgrundlagen und Orientierungswerte

Für die Ermittlung und Beurteilung der Lärmsituation werden folgende Normen, Richtlinien und Unterlagen herangezogen:

DIN 18005

Schallschutz im Städtebau, Berechnungsver-

Ausg. Mai 1987

fahren

Beiblatt 1 zu

Schallschutz im Städtebau,

DIN 18005

Schalltechnische Orientierungswerte für

Ausg. Mai 1987

die städtebauliche Planung

DIN 4109

Schallschutz im Hochbau

Ausg. Nov. 1989

VDI 2714

Schallausbreitung im Freien

Ausg. Jan. 1988

VDI 2719

Schalldämmung von Fenstern und

Ausg. Aug. 1987

deren Zusatzeinrichtungen

VDI 2720 E

Schallschutz durch Abschirmung im Freien

Ausg. Febr. 1991

Lagepläne der Gemeinde Westoverledingen und Büro Thalen Consult GmbH, Bremen

Die Berechnung der Immissionspegel erfolgt mit Hilfe des Computerprogrammes Schallplan, Version 3.7 von 29.10.93, vom Ingenieurbüro Braunstein & Berndt, 71397 Leutenbach-

Die relevanten örtlichen Gegebenheiten (Straßen, Gebäude, Wände, Gelände usw.) wurden digitalisiert.

Bezüglich Lärmeinwirkung gibt das Beiblatt 1 zu DIN 18005 Teil 1 für Allgemeines Wohngebiet (WA) folgende Orientierungswerte an:

Verkehrslärmeinwirkung:

<u>tags</u> <u>nachts</u> 55 dB(A) 45 dB(A)

Für den Tag ist die Zeit von 6.00 Uhr - 22.00 Uhr und für die Nacht die Zeit von 22.00 Uhr - 6.00 Uhr zugrunde zu legen.

4.) Berechnung des Straßenverkehrslärmes

Die Berechnung der durch den KFZ-Verkehr verursachten Immissionspegel erfolgt nach dem Teilstückverfahren der DIN 18005.

- 7 -

Danach wird der auf einem Fahrstreifen fließende Verkehr als eine Linienschallquelle in 0,5 m Höhe über der Mitte des Fahrstreifens betrachtet.

Der längenbezogene Schalleistungspegel L_{χ} 'in dB/m errechnet sich nach der Gleichung:

$$L_{W'} = L_{m}^{(25)} + \Delta L_{Stro} + \Delta L_{v} + \Delta L_{Stg} + 17.6 dB$$

hierin bedeuten:

längenbezogener Schalleistungspegel in dB/m L_m(25) Mittelungspegel in einem Abstand von 25 m von der Mitte der Quelle, bei nicht geriffeltem Gußasphalt, bei einer zulässigen Höchstgeschwindigkeit von 100 km/h und freier Schallausbreitung in dB Korrektur nach Tabelle 2 der DIN 18005 für unterschied-<u>-</u> ▲ L_{Str0} liche Straßenoberflächen in dB Korrektur nach Bild 4 der DIN 18005 für unterschiedliche A Ly zulässige Höchstgeschwindigkeiten in dB Zuschlag nach Tabelle 3 der DIN 18005 für Steigungen ALSta. in dB

Der Schalleistungspegel der einzelnen Teilfahrstrecken errechnet sich nach:

$$L_{W} = L_{W'} + 10 \ Ig \ (I/I_{0})$$

hierin bedeuten:

Ly = Schalleistungspegel der Teilfahrstrecke in dB

L_{V'} = längenbezogener Schalleistungspegel in dB/m

1 = Länge der Teilfahrstrecke in m

 $l_0 \triangleq Bezugslänge (l_0 = 1 m)$

Der Immissionspegel an einem Immissionsort errechnet sich nach VDI 2714 mit Hilfe der Formel:

$$L_S = L_W + D_I + K_O - D_S - D_L - D_{BM} - D_D - D_G - D_\Theta$$

hierin bedeuten:

L_c = Immissionspegel

Ly = Schalleistungspegel

D₁ ≘ Richtwirkungsmaß

K₀ ≘ Raumwinkelmaß

D_c = Abstandsmaß

D_I ² Luftabsorptionsmaß

D_{BM} ≘ Boden- und Meteorologiedämpfungsmaß

D_n ≘ Bewuchsdämpfungsmaß

D_G = Bebauungsdämpfungsmaß

D_p = Einfügungsdämpfungsmaß eines Schallschirmes

Auf Grund von Verkehrszählungen der Stadt Aurich vom Februar 1993 und Daten aus dem Generalverkehrsplan von 1989 können folgende DTV-Werte (durchschnittliche tägliche Verkehrsstärke) angegeben werden:

Leerer Str. - B 70 (1993) DTV = 8723 KFZ/24 h Ihrener Str. - K 24 (1989) DTV = 3065 KFZ/24 h Bahnhofstr. - K 23 (1989) DTV = 5471 KFZ/24 h

Anhand von Dauerzählung und der Shell-Prognose (9/91) wird mit den Prognosefaktoren für das Jahr 2005 von 1,114 (1993 – 2005) und 1,29 (1989 – 2005) gerechnet. Hieraus ergeben sich die DTV-Werte wie folgt:

Leerer Str. - B 70 (2005) DTV = 9720 KFZ/24 h Ihrener Str. - K 24 (2005) DTV = 3959 KFZ/24 h Bahnhofstr. - K 23 (2005) DTV = 7060 KFZ/24 h

Die nachfolgenden LKW-Anteile wurden berücksichtigt:

Die zulässige Höchstgeschwindigkeit auf der B 70 beträgt 100 km/h und auf den beiden Kreisstraßen 50 km/h.

Ergebnisse der Straßenverkehrslärmberechnung

Die Immissionspegel der Ihrener Straße und der Bahnhofstraße sind im Lageplan der Anlage anhand von Isolinien (Linien gleichen Immissionspegels) aufgeführt.

Der Bereich entlang der B 70 wird wie folgt betrachtet.

In den entsprechenden Abständen von der Straßenmitte (B 70) sind folgende Immissionspegel berechnet worden.

Abstand von B 70 in m	Immissionspegel in dB(A) Stockwerk EG / 1. OG / 2. OG
esta (1)	tags nachts
20	69 / 69 / 68 61 / 61 / 61
30	66 / 66 / 66 58 / 58 / 59
50	63 / 63 / 63 55 / 55 / 55
80	60 / 60 / 60 52 / 52 / 52
200	53 / 53 / 53 45 / 45 / 45

<u>Tabelle 1:</u> Immissionspegel im Bebauungsplangebiet durch die B 70

5.) Erforderliche Lärmschutzmaßnahmen

Es werden Lärmschutzmaßnahmen bezüglich des Straßenverkehrslärmes von der B 70 und der Bahnhofstraße vorgeschlagen.

Die Immissionspegel, welche sich im gesamten Plangebiet ergeben, sind im Lageplan der Anlage anhand von Isolinien dargestellt.

Die für die Ausarbeitung der Lärmschutzmaßnahmen relevanten Bereiche (B 70 und Bahnhofstraße) werden im einzelnen betrachtet.

Lärmschutzmaßnahmen an der B 70

Zur Einhaltung der Orientierungswerte an den Erdgeschossen und in den Freiräumen (z. B. Garten) an der B 70 wird die Errichtung eines Lärmschutzwalles mit einer Höhe von 4 Metern (über Straßenniveau) entlang der B 70 empfohlen.

In Richtung Leer ist der Lärmschutzwall an den vorhandenen Lärmschutzwall (Bebauungsplangebiet IH 17 - Ihrhove) spaltfrei anzuschließen.

In Richtung Papenburg endet der Lärmschutzwall 220 Meter vor der Ihrener Straße (Brücke).

Alternativ zum Lärmschutzwall kann auch eine Lärmschutzwand (h = 4 m) errichtet werden.

Die Lage des Lärmschutzwalles ist im Lageplan der Anlage dargestellt.

Berechnungsergebnisse des Straßenverkehrslärmes mit
Lärmschutzwall (h = 4 m)

In den entsprechenden Abständen von der Straßenmitte der B 70 können folgende Immissionspegel angegeben werden:

Abstand von der B 70 in m	Immissionspegel in dB(A) Stockwerk EG / 1. OG / 2. OG				
	tags	nachts			
20	50 / 69 / 68	43 / 61 / 61			
30	52 / 62 / 66	44 / 55 / 59			
50	52 / 56 / 62	44 / 49 / 54			
80	51 / 53 / 55	44 / 45 / 48			

<u>Tabelle 2:</u> Immissionspegel im Bebauungsplangebiet durch die B 70 mit Lärmschutzwall h = 4 m

Bezüglich der Überschreitungen der Orientierungswerte in den 1. und 2. Obergeschossen werden Lärmschutzfenster vorgeschlägen.

Erforderliche Schallschutzklassen der Fenster

Aus den Berechnungsergebnissen ist zu ersehen, daß Überschreitungen der Orientierungswerte bezüglich Straßenverkehrslärm tags und nachts im 1. und 2. OG auftreten. Daher werden für bestimmte Bereiche Schallschutzfenster vorgeschlagen.

Die überschlägige Ermittlung der erforderlichen Schallschutzklassen erfolgt nach DIN 4109 "Schallschutz im Hochbau".

Da zur Zeit noch keine konkreten Bauzeichnungen vorliegen, werden bezüglich Raumabmessungen und Fensterflächenanteil folgende Annahmen getroffen:

- Das Verhältnis Raumhöhe zur Raumtiefe_beträgt etwa 0,8.
- Der Fensterflächenanteil der Gesamtfassade eines Raumes beträgt maximal 50 %.
- Das Schalldämm-Maß der Außenfassade beträgt mindestens R'_{ν} = 50 dB.

Folgende Bereiche mit den dazugehörigen Schallschutzklassen der Fenster werden vorgeschlagen.

Bereich 1: Abstand von Straßenmitte 20 - 30 m; Lärmschutzfenster der Klasse IV (1. und 2. OG); Vorder- und Seitenfronten bzgl. B 70

Bereich 2: Abstand von Straßenmitte 31 - 50 m; Lärmschutzfenster der Klasse II (1. OG) und Klasse III (2. OG), Vorder- und Seitenfronten bzgl. B 70

Bereich 3: Abstand von Straßenmitte 51 - 80 m, Lärmschutzfenster der Klasse II (2. OG); Vorder- und Seitenfronten bzgl.

B 70

Lärmschutzmaßnahmen bezüglich der Bahnhofstraße

An der nördlichen Grenze des Plangebietes kommt es durch den Straßenverkehrslärm von der Bahnhofstraße an zwei Gebäuden zu geringfügigen Überschreitungen der Orientierungsswerte.

An den Grundstücksgrenzen wird zwischen den Gebäuden und der Bahnhofstraße die Errichtung eines 3 Meter hohen und ca. 50 Meter langen Lärmschutzwalles vorgeschlagen.

Für die oberen Geschosse sind an den Vorder- und Seitenfronten Lärmschutzfenster der Klasse 2 vorzusehen.

Ist die Errichtung des Lärmschutzwalles aus städtebaulicher Sicht nicht möglich sind alternativ folgende Festsetzungen zu treffen.

- 1. An den Vorder- und Seitenfronten sind Lärmschutzfenster der Klasse 2 vorzusehen.
- 2. Die Freiräume (z. B. Garten, Terrassen, usw.) sind auf der von der Bahnhofstraße abgewandten Gebäudeseite anzuordnen.

Beurteilung

Zur Beurteilung der Lärmsituation wird der Lageplan mit den Isolinien in der Anlage betrachtet.

Es ist ersichtlich, daß es im Großteil des Plangebietes nicht zu Überschreitungen der Orientierungswerte nach dem Beiblatt 1 der DIN 18005 Teil 1 kommt.

Die Beurteilung der Lärmsituation an der B 70 und der Bahnhofstraße wird wie folgt vorgenommen.

Beurteilung des Straßenverkehrslärmes entlang der B 70

Zur Beurteilung der Lärmsituation werden die berechneten Beurteilungspegel den Orientierungswerten des Beiblattes 1 zur DIN 18005 T 1 gegenübergestellt.

Abstand von Mitte B 70 in m	Zeitraum	Beurteilungs- pegel in dB(A) Stockwerk EG/1.0G/2.0G	Orientierungs- wert
20	tags	50 / 69 / 68	55
30		52 / 62 / 66	55
50		52 / 56 / 62	55
80		51 / 53 / 55	55
20	nachts	43 / 61 / 61	45
30		44 / 55 / 59	45
50		44 / 49 / 54	45
80		44 / 45 / 48	45

<u>Tabelle 3:</u> Gegenüberstellung der Beurteilungspegel mit den Orientierungswerten der DIN 18005 mit Lärmschutzwall h = 4 m

Aus der Gegenüberstellung ist ersichtlich, daß es im Freiraum und den Erdgeschossen der Wohnhäuser an der B 70 mit dem ausgelegten Lärmschutzwall (siehe Anlage) zu keinen Überschreitungen der Orientierungswerte nach dem Beiblatt 1 zur DIN 18005 T 1 kommt.

Für die oberen Stockwerke werden Lärmschutzfenster vorgeschlagen. Die Bereiche mit den entsprechenden Schallschutzklassen der Fenster sind im Lageplan der Anlage dargestellt (siehe auch Kapitel 5).

Die Ermittlung der Schallschutzklassen kann nur als überschlägig gelten, da die genauen Angaben wie Hausstandort, Ausführung der Räume und Außenfassaden noch nicht bekannt sind.

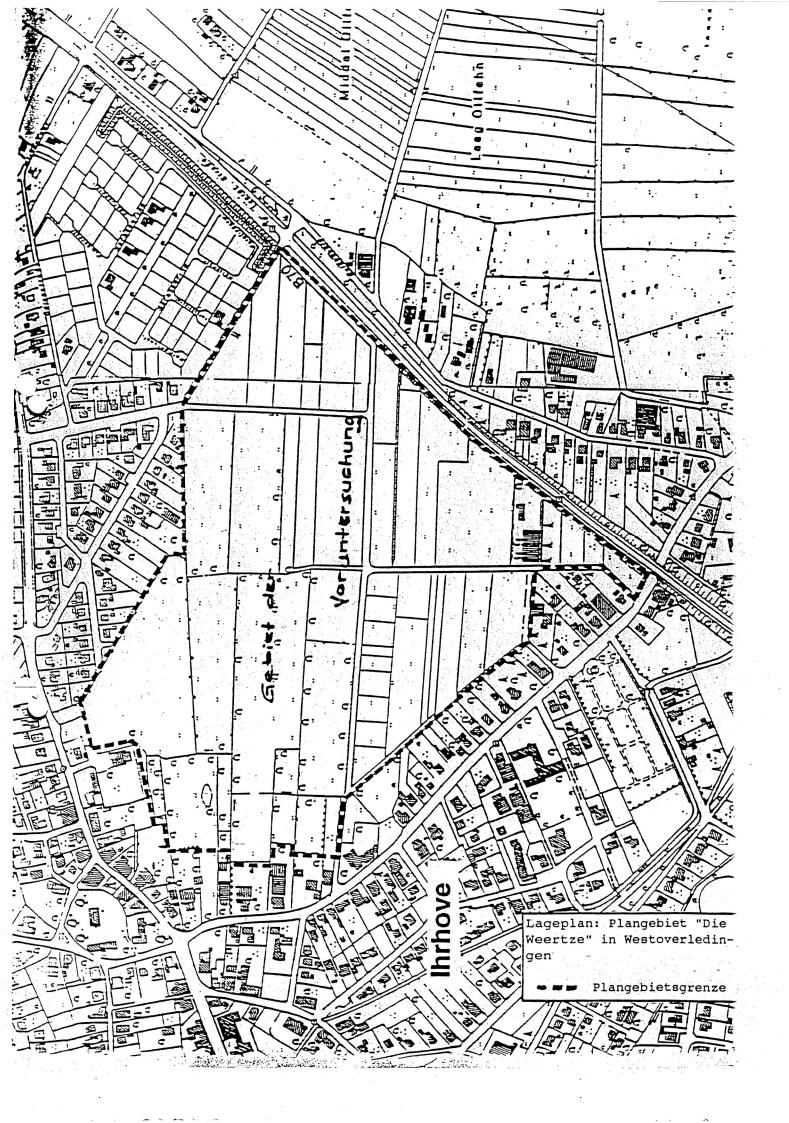
In einem Abstand ab 81 m von der Mitte der B 70 sind mit dem angegebenen Lärmschutzwall keine Maßnahmen erforderlich, da ab dieser Entfernung die Orientierungswerte im Plangebiet eingehalten werden.

Beurteilung der Lärmsituation entlang der Bahnhofstraße

An der Bahnhofstraße kommt es an zwei zur Straße gelegenen Gebäuden zu geringfügigen Überschreitungen der Orientierungswerte.

Für den Schutz des Freiraumes und der Erdgeschosse wird die Errichtung eines 3 Meter hohen Lärmschutzwalles vorgeschlagen.

An den Vorder- und Seitenfronten sind Lärmschutzfenster der Klasse 2 vorzusehen (siehe auch Kapitel 5).


Ist die Errichtung des Lärmschutzwalles aus städtebaulicher Sicht nicht möglich, sind alternativ die Festsetzungen wie in Kapitel 5 angegeben zu treffen.

Gesamtbeurteilung

Aus schalltechnischer Sicht bestehen bei Ausführung der angegebenen Lärmschutzmaßnahmen bezüglich Straßenverkehrslärm keine Bedenken gegen die Aufstellung des Bebauungsplanes.

7.) Anlage

- Lagepläne
- Datenblätter

PG	We	stoverleding	en Erge	ebnis	Zyklus	: 004	Seite
NrPu	nkt_name	X	Y	H	Pegel(t)_	Pegel(n)_	Pegel(s)
2	Projekt Laufdatei Rechenlauf			Datum Uhrzeit	: 10.09.93 : 08:53	3	
5	Berechnu	ng des Straß	enverkehrs	lärms der	B70 ohne L	ārmschutz	
7	1464;SW3	.5KPKDDIN180	05ASP4;S1I	3//			
8 9	*	4 6 2			5.		
10 20 m	**	217.907	61.406	102.000	68.905	61.305	0.000
11 20 m 12 20 m		217.907	61.406	104.800	68.805	61.205	0.000
13		217.907	61.406	107.600	68.472	60.872	0.000
14 30 m	·	209.996	67.025	102.000	65.966	58.366	0.000
15 30 m 16 30 m		209.996	67.025	104.800	65.944	58.344	0.000
17		209.996	67.025	107.600	66.158	58.558	0.000
18 40 m		201.325	73.104	102.000	64.115	56.515	0.000
19 40 m		201.325	73.104	104.800	64.120	56.520	0.000
20 40 m 21		201.325	73.104	107.600	63.942	56.342	0.000
22 50 m		193.866	78.708	102.000	62.649	55.049	0.000
23 50 m		193.866	78.708	104.800	62.653	55.053	0.000
24 50 m		193.866	78.708	107.600	62.669	55.069	0.000
26 60 m		186.200	84.633	102.000	61.636	54.036	0.000
27 60 m		186.200	84.633	104.800	61.636	54.036	0.000
28 60 m 29		186.200	84.633	107.600	61.602	54.002	0.000
30 70 m		177.764	90.216	102.000	60.756	53.156	0.000
31 70 m		177.764	90.216	104.800	60.753	53.153	0.000
32 70 m 33		177.764	90.216	107.600	60.674	53.074	0.000
34 80 m		169.637	96.632	102.000	59.799	52.199	0 000
35 80 m		169.637	96.632	104.800	59.798	52.198	0.000
36 80 m 37		169.637	96.632	107.600	59.700	52.100	0.000
38 90 m		161.617	102.675	102.000	59.153	51.553	0.000
39 90 m		161.617	102.675	104.800	59.151	51.551	0.000
40 90 m 41	n de N	161.617	102.675	107.600	59.019	51.419	0.000
42 100 m		153.287	109.212	102.000	58.382	50.782	0.000
43 100 m		153.287	109.212	104.800	58.380	50.780	0.000
44 100 m 45		153.287	109.212	107.600	58.217	50.617	0.000
46 110 m		145.749	114.989	102.000	57.886	EO 206	0 000
47 110 m		145.749	114.989	104.800		50.286 50.284	0.000
48 <u>1</u> 10 m		145.749	114.989	107.600	57.719	50.119	0.000
50 120 m	H = H = H	137.389	120.574	102.000	57 100	40 500	0.000
51 120 m	*	137.389	120.574	104.800	57.192 57.190	49.592 49.590	0.000
52 120 m		137.389	120.574	107.600	57.024	49.590	0.000 0.000
4 130 m		129.724	126.449	102.000	56 660	40.000	* F
55 130 m	±.		126.449	102.000	56.669 56.667	49.069 49.067	0.000
1,4 1,					30.007	49.001	0.000

PG			West	toverleding	en Erge	bnis	Zyklus	: 004	Seite
Nr.	P	unkt	_name	x	YY	н	Pegel(t)_	Pegel(n)_	Pegel(s)
56 57	130	m		129.724	126.449	107.600	56.484	48.884	0.000
	140			120.678	132.445	102.000	56.028	48.428	0.000
59	140	m		120.678	132.445	104.800	56.006	48.406	0.000
	140	m	F 9	120.678	132.445	107.600	55.853	48.253	0.000
61						·		757200	0.000
	150			113.515	138.255	102.000	55.467	47.867	0.000
	150			113.515	138.255	104.800		47.854	0.000
	150	m .		113.515	138.255	107.600	55.317	47.717	0.000
65		* 0			,		:		
66	160	m		104.536	144.679	102.000	54.880	47.280	0.000
	160		72 721 16	104.536	144.679	104.800	54.870	47.270	0.000
	160	m		104.536	144.679	107.600	54.762	47.162	0.000
69				1 . 53 . A.		V 25	- F 13		0.000
	170			96.720	150.601	102.000	54.386	46.786	0.000
71	170	m		96.720	150.601	104.800		46.759	0.000
72	170	m		96.720	150.601	107.600	54.192	46.592	0.000
73								10.032	0.000
74	180	m ·		88.710	156.193	102.000	53.665	46.065	0.000
75	180	m		88.710	156.193	104.800	53.716	46.116	0.000
76	180	m		88.710	156.193	107.600	53.628	46.028	0.000
77	100	A Section	rus ka ki					10.020	0.000
78	190	m		80.164	162.274	102.000	53.106	45.506	0.000
79	190	m .		80.164	162.274	104.800		45.597	0.000
80	190	m		80.164	162.274	107.600	53.113	45.513	0.000
81							333	70.013	0.000
82	200	m [.]		72.115	168.517	102.000	52.557	44.957	0.000
83	200	m		72.115	168.517	104.800	52.640	45.040	0.000
84	200	m		72.115	168.517	107.600	52.647	45.047	0.000
			<u> </u>			000	0 2.0 41	40.047	0.000

Ergebnistabelle mit Leq für tags, nachts und sonder

F	G :	We	stoverleding	gen Erge	bnis	Zyklus	: 005	Seite
N	ır.	Punkt_name	X	Y	H	Pegel(t)_	Pegel(n)_	Pegel(s)
	1 2 3 4	Projekt Laufdatei Rechenlauf			Datum Uhrzeit	: 10.09.93 : 08:52		
	5 6 7	Berechnu mit Lärm	ng des Straß schutzwall/-	Benverkehrs wand h=4m	lärms der	B70	•	
	7 8 9	1464;SW3	.5KPPBKDDIN1	8005ASP5;B	2S1I3/	e g		et N
	10 2	20 m 20 m 20 m	217.907 217.907 217.907	61.406 61.406 61.406	102.000 104.800 107.600	50.129 68.586 68.446	42.529 60.986 60.846	0.000 0.000 0.00C
3 41	14 3	30 m 30 m 30 m	209.996 209.996 209.996	67.025 67.025 67.025	102.000 104.800 107.600	51.971 62.421 66.135	44.371 54.821 58.535	0.000 0.000 0.000
	18 4 19 4 20 4	0 m	201.325 201.325 201.325	73.104 73.104 73.104	102.000 104.800 107.600	52.821 59.467 63.700	45.221 51.867 56.100	0.000 0.000 0.000
2	22 5 23 5	0 m 0 m 0 m	193.866′ 193.866 193.866	78.708 78.708 78.708	102.000 104.800 107.600	51.880 56.476 61.566	44.280 48.876 53.966	0.000 0.000 0.000
2 2 2	26 60 27 60 28 60	0 m	186.200 186.200 186.200	84.633 84.633 84.633	102.000 104.800 107.600	51.494 54.741 59.790	43.894 47.141 52.190	0.000 0.000 0.000
3	0 70 1 70 2 70 3	0 m	177.764 177.764 177.764	90.216 90.216 90.216	102.000 104.800 107.600	51.735 53.748 57.506	44.135 46.148 49.906	0.000 0.000 0.000
3	4 80 5 80 6 80	O m	169.637 169.637 169.637	96.632 96.632 96.632	102.000 104.800 107.600	51.233 52.722 55.475	43.633 45.122 47.875	0.000 0.000 0.000
3	8 90 9 90 0 90 1) m	161.617 161.617 161.617	102.675 102.675 102.675	102.000 104.800 107.600	50.891 52.015 53.990	43.291 44.415 46.390	0.000 0.000 0.000
4	3 10 4 10	00 m 00 m 00 m	153.287 153.287 153.287	109.212 109.212 109.212	102.000 104.800 107.600	50.709 51.539 52.809	43.109 43.939 45.209	0.000 0.000 0.000
4	6 11 7 11 3 11 9	O m	145.749 145.749 145.749	114.989 114.989 114.989	102.000 104.800 107.600	50.553 51.221 52.022	42.953 43.621 44.422	0.000 0.000 0.000
5) 12 1 12 2 12 3	0 m	137.389 137.389 137.389	120.574 120.574 120.574	102.000 104.800 107.600	50.313 50.845 51.259	42.713 43.245 43.659	0.000 0.000 0.000
54	130 130		129.724 129.724	126.449	102.000 104.800	50.375 50.790	42.775 43.190	0.000

PG -			West	overleating	en Erge	emis	Zykius	. 005	Seite
Nr.	Pt	unkt_na	me	X	Y	H	Pegel(t)_	Pegel(n)_F	Pegel(s)
56 57	130	m		129.724	126.449	107.600	50.852	43.252	0.000
27	140	m		120.678	132.445	102.000	49.569	41.969	0.000
59	140	m		120.678	132.445	104.800	49.886	42.286	0.000
60	140	m	8	120.678	132.445	107.600	49.863	42.263	0.000
61						¥	* **		
62	150	m		113.515	138.255	102.000	49.180	41.580	0.000
63	150	m	N	113.515	138.255	104.800	49.482	41.882	0.000
64	150	m		113.515	138.255	107.600	49.423	41.823	0.000
65						e) 25 a		and the second	
66	160	m		104.536	144.679	102.000	48.705	41.105	0.000
67	160	m		104.536	144.679	104.800	48.974	41.374	0.000
68	160	m	12	104.536	144.679	107.600	49.108	41.508	0.000
69	u i Kajaran								9.00
70	170	m		96.720	150.601	102.000	48.759	41.159	0.000
	170		Albania I	96.720	150.601	104.800	48.922	41.322	0.000
0.0	170			96.720	150.601	107.600	48.735	41.135	0.000
	. 4,74			"field to be	i parkin				
	180	m		88.710	156.193	102.000	47.782	40.182	0.000
and the second second	180			88.710	156.193	104.800	48.226	40.626	0.000
	180			88.710	156.193	107.600	48.278	40.678	0.000
77	80 DE 200						NOTE AND AND		
	190	m		80.164	162.274	102.000	47.029	39.429	0.000
	190			80.164	162.274	104.800	47.626	40.026	0.000
11	190			80.164	162.274	W 100	47.668	40.068	0.000
81	DECEMBER OF THE								
100	200	m		72.115	168.517	102.000	46.718	39.118	0.000
	200			72.115	168.517	104.800		39.641	0.000
The second second	200			72.115	168.517		47.556	39.956	0.000
	200								

Ergebnistabelle mit Leq für tags, nachts und sonder